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Abstract

Helicopter main rotor smoothing is a maintenance procedure that is routinely performed to minimize destructive

airframe vibrations induced by non-uniform mass and/or aerodynamic distributions in the main rotor system. This

important task is both time consuming and expensive, so improvements to the process have long been sought.

Traditionally, vibrations have been minimized by calculating adjustments based on an assumed linear relationship between

adjustments and vibration response. In recent years, artificial neural networks have been trained to recognize non-

parametric mappings between adjustments and vibration response. This study was conducted in order characterize the

adjustment mapping of the Vibration Management Enhancement Program’s PC-ground base system (PC-GBS), and

compare it to the linear adjustment mapping used in the aviation vibration analyzer (AVA). Results show that, in a

majority of situations, the neural network algorithms in PC-GBS produce adjustments that are identical to those produced

by a linear algorithm similar to that used by AVA. Therefore, the use of neural networks for creating the mapping between

adjustments and vibration response, provides no significant improvement over a linear mapping.

Published by Elsevier Ltd.
1. Introduction

Since the earliest days of rotary wing aviation, helicopters have been known as much for their tendency to
exhibit severe vibrations as for their ability to take off and land vertically. In addition to providing the
principal source of lift for the helicopter, helicopter main rotors are also the principal source of some of the
most destructive vibrations known to the aircraft industry. The principal sources of some of these vibrations
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are mass and aerodynamic dissimilarities among the rotor blades. These dissimilarities result in vibratory
forces that occur at the same frequency as the rotor speed, and are commonly known as 1/rev vibrations.

In recognition of the importance of minimizing 1/rev vibrations, for improving aircrew performance and
passenger comfort, and minimizing airframe operating costs, many techniques have been developed to identify
and correct blade-to-blade dissimilarities [1]. While lateral 1/rev vibrations primarily result from blade mass
imbalances, which can be minimized by adjustment weights at either the rotor hub or blade tips, vertical 1/rev
vibrations are primarily due to aerodynamic imbalances. Most early methods for reducing vertical 1/rev
vibrations relied on the assumption that if the blades were aerodynamically identical, they would traverse the
same path. It was thereby presumed that by ‘‘tracking’’ the blades, or making them all fly in the same path for
all flight conditions, the vertical 1/rev vibrations could be minimized or eliminated. Thus, elimination of 1/rev
vibrations has commonly been called rotor track and balance (RTB).

Field experience, backed up by mathematical modelling [2], has provided ample evidence that merely
tracking helicopter rotor blades will not necessarily result in minimum 1/rev vertical vibrations [3]. Since blade
track is not a reliable indicator of minimum vibratory loads, ‘‘rotor smoothing’’ techniques were developed to
reduce 1/rev vertical vibrations. Helicopter main rotor smoothing is a technique under which vibration
magnitude and phase are recorded both on the ground and in flight. Then, based on a predetermined
relationship between vibrations and corrective adjustments, pitch link and trim tab adjustments are made to
the blades. In order to reduce the vibrations to acceptable levels, this technique usually requires several flights,
and is therefore both time consuming and expensive. It has been estimated that 5% of a helicopter’s annual
flight hours are devoted to eliminating 1/rev vibrations [4].

Efforts have long been made to improve main rotor smoothing techniques so as to decrease the number of
required flights, and save time and money as a result. Over the years, vibration and track measuring
equipment have become more accurate and reliable. Nonetheless, the methodology underlying many, or
perhaps most, rotor smoothing implementations assumes that the mapping between vibrations and
adjustments is linear, although corrections that account for statistical [5] or probabilistic [6] variations are
often included. However, it has also been suggested that the linear assumption is overly simplistic; and that
more sophisticated algorithms, which can account for nonlinearities, should be implemented [7]. Several
algorithms, including neural networks [7–11], fuzzy logic [12], and interval modeling [13] have been
investigated.

Rotor smoothing, which originally was performed by a stand-alone system, has recently been incorporated
into health usage and monitoring systems (HUMS). The purpose of HUMS is to detect faults in many aircraft
systems, including the rotor system. Like rotor smoothing algorithms, HUMS algorithms rely on
measurements such rotating blade frequencies [10,14], hub forces and moments [11,12,15], blade response
[11,12,15], and other quantities in addition to vibrations measurements; and serve as data sources for
algorithms that make a determination as to which fault is causing the undesirable aircraft vibrations.
Examples of operational HUMS installations are the US Army’s Vibration Management Enhancement
Program (VMEP) [8,9,16] and Goodrich Corporation’s IMD HUMS [5].

In recent years, a substantial effort has been made to improve the HUMS software that is used to convert
raw vibration measurements into corrective main rotor adjustments [7–9]. In doing so, the tasks performed by
the maintainers have clearly become easier to accomplish. However, the question of whether the mapping
between vibration measurements and blade adjustments is linear still remains. The intent of this investigation
is to determine whether new algorithms, which are capable of accounting for nonlinear mappings between
vibration measurements and blade adjustments, offer any significant advantage over standard linear methods.
To this end, adjustments generated by the linear, aviation vibration analyzer coefficients will be compared to
adjustments from the US Army’s Vibration Management Enhancement Program neural network, for identical
vibration measurements.

2. Technical background

Due to the complexity of the dynamics involved with a main rotor system, simplifying assumptions have
been introduced when defining the relationship between vibrations and corrective adjustments [1]. One such
assumption is that the relationship between main rotor adjustments and vibration changes is linear, and may
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be described mathematically as

½C�NxMfAdjgMx1 ¼ fDVibgMx1. (1)

This assumption has allowed for the development of straightforward main rotor smoothing algorithms, at the
core of which are empirically derived, linear sensitivity coefficients (½C� in Eq. (1)). Sensitivity coefficients are
determined, using Eq. (2), over a series of test flights during which changes in vibrations are measured for
single adjustment moves.

Cn;m ¼
Vibbeforen � Vibaftern

Adjm
. (2)

While the linear methodology has produced acceptable results, it has been proposed that improved
performance can be obtained by relaxing the linear assumption and allowing for a nonlinear relationship
between vibrations and adjustments [7].

To this end, a new paradigm was introduced into the practice of main rotor smoothing. Artificial neural
networks have been trained to recognize the relationship between main rotor adjustments and the resulting
changes in vibrations. In the late 1990s, Wroblewski et al. [8] implemented a software system based on neural
networks as part of the South Carolina Army National Guard and US Army’s Vibration Management
Enhancement Program (VMEP). The PC-ground base system (PC-GBS) is used today by several helicopter
units in the US Army for rotor smoothing operations.

At the core of the PC-GBS are four neural networks. These are the adjustment evaluation network (AEN),
the vibration prediction network (VPN), the track optimization network (TON), and the solution
optimization expert (SOE). Each of these neural networks performs a specific function that contributes to
finding the optimum set of adjustments to minimize the vibration levels.

The purpose of the adjustment evaluation network is to convert measured vibration data into a set of
candidate adjustments known as reduced adjustment vectors. These reduced adjustment vectors are defined by
a positive magnitude, and a phase angle that is oriented with the helicopter frame of reference, much like the
vibration vectors. Each reduced adjustment vector may be applied to the main rotor system as defined by the
adjustment evaluation network, or as the negative of the adjustment magnitude with a 1801 phase shift. Either
way, the adjustments will achieve the same change in predicted vibrations. The only difference between
applying the positive versus the negative adjustment magnitude is the change in blade track.

Vibration levels that will result from the application of the reduced adjustments vectors generated by the
adjustment evaluation network are predicted by the vibration prediction network. These predicted vibration
levels provide a basis for comparing the effectiveness of the reduced adjustment vectors.

One of the purposes of the track optimization network is to apply the reduced adjustment set to the main
rotor in a manner that minimizes the main rotor blade track split. The track optimization network does this as
it converts a reduced adjustment vector to a detailed adjustment set on actual rotor blades.

The function of the solution optimization expert is to select a set of adjustments from the list of candidates,
which will reduce vibration magnitudes below desired thresholds with as few adjustment moves as possible.
This principle makes the solution optimization expert very effective in minimizing the chances for human error
because it has been observed that, on average, 20% of adjustments are applied in the wrong direction or to the
wrong blade [8].

One of the goals of this study is to characterize the mapping between vibrations and adjustments in the PC-
GBS neural networks. Of the four networks that make up the rotor smoothing function in the PC-GBS, it
appears that only the adjustment evaluation network and the vibration prediction network contain the
vibration/adjustment mappings of interest. Throughout the course of this study it has been assumed that the
adjustment evaluation network and vibration prediction network have been fully trained for the UH-60
Blackhawk, AH-64A Apache, and AH-64D Longbow Apache helicopters.

3. Analysis

The Blackhawk, Apache, and Longbow Apache were studied for a broad spectrum of vibration magnitudes.
Vibration data were downloaded from an online VMEP database compiled and maintained by Intelligent
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Automation Corporation (IAC). For each aircraft type, 20 flights were downloaded from the IAC database,
5 in each of four vibration categories, as shown in Table 1.

The vibration data from the IAC database was analyzed using PC-GBS version 3.0, Build 439, Service Pack
2. All adjustment sets were calculated by stipulating that the maximum number of adjustment moves be used,
thus negating the effects of the solution optimization network. This allowed the adjustment evaluation
network to produce the most highly defined adjustment sets possible.

For each flight, an entry consisting of vibration vectors (magnitude and phase), predicted vibration vectors,
and detailed adjustment values was made in a spreadsheet. The values for each entry were recorded directly
from the Vibration tab and the Rotor Smoothing Solution tab of the PC-GBS.

In addition to the analysis performed using PC-GBS, a linear algorithm was created for each aircraft based
on the sensitivity coefficients of the US Army’s Aviation Vibration Analyzer (AVA). Fig. 1 is a histogram of
the 20 UH-60 flights considered in this study. The histogram represents the percent difference between the set
of adjustments from PC-GBS to one from the AVA-based algorithm. Only the pitch link and trim tab
adjustments can be compared directly, since AVA does not produce weight adjustments based on flight data
for the UH-60. It is obvious that there are significant differences between the two adjustment sets. Note that in
Table 1

Vibration categories

Category UH-60 AH-64A/D

Good Vert (Lat) 0.0–0.25 (0.0–0.2) 0.0–0.3 (0.0–0.2)

Above Vert (Lat) 0.25–0.5 (0.2–0.5) 0.3–0.5 (0.2–0.5)

Caution Vert (Lat) 0.5–0.8 (0.5–0.8) 0.5–0.8 (0.5–0.8)

Exceed Vert (Lat) 40:8 ð40:8Þ 40:8 ð40:8Þ

Values are given in inches per second (ips).
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Fig. 1. Histogram of percent difference between PC-GBS adjustments and AVA adjustments for the UH-60, for the weight and pitch link.
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Fig. 2. Histogram of percent difference between PC-GBS adjustments and AVA adjustments for the AH-64A for the weight, pitch link,

tab 8–10, tab 6–10 and tab 4–10.
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these histograms, when a comparison is said to differ by 90–100%, differences that exceed 100% are also
included.

Fig. 2 shows the differences between the VMEP neural network and linear AVA adjustment sets for the
AH-64A. Again, for the 20 flights considered, the differences between the neural network and the linear
solutions are often large. This does not imply that the mapping in the vibration prediction network is
nonlinear. It only means that the AVA and PC-GBS algorithms produce very different adjustments for the
same vibration vector.

Fig. 3 shows the differences between the VMEP neural network and linear AVA adjustment sets for the
AH-64D. Unlike the previous comparisons, the adjustment sets generated by the neural network and linear
algorithms are identical. This clearly indicates that the PC-GBS has learned a linear mapping for the AH-64D
that is a near perfect match to the AVA coefficients. While this simple analysis is sufficient to characterize the
VMEP neural network mapping for this one aircraft type, a different method must be used to characterize the
other two.

In order to characterize the mappings for the UH-60 and the AH-64A, ad hoc sensitivity coefficients were
developed for every flight. These ad hoc coefficients were determined using Eq. (2) with the Vibbeforen set as the
measured vibration vector. Vibaftern was set to the vibration level predicted by the VPN, read from the
Vibration Values tab of PC-GBS after applying a single ‘‘manual’’ adjustment move of the smallest size
(see Table 2). This procedure is identical to the procedure described above for obtaining linear coefficients;
except in this case, the VPN was used as a flight simulator.

The ad hoc coefficients were then used in the same manner as the AVA coefficients to calculate adjustment
sets for each of the 20 flights. The ad hoc adjustments were then compared to the adjustments generated by the
AEN. Fig. 4 shows the polar plots of the UH-60 weight adjustment sets as determined by the ad hoc

coefficients and by the PC-GBS. These adjustments are based on measured vibrations ranging from ‘‘good’’ to
‘‘exceed’’.
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Fig. 3. Histogram of percent difference between PC-GBS adjustments and AVA adjustments for the AH-64D for the weight, pitch link,

tab 8–10, tab 6–10 and tab 4–10.

Table 2

Minimum and maximum adjustment moves allowable in PC-GBS

UH-60 AH-64A/D

Smallest Largest Smallest Largest

Weight 5 oz 80 oz 113 g 1017 g

Pitch link 1 notch 30 notches 0.5 flats 12 flats

Trim tab bend 2mils 20mils 0.51 5.01

N.A. Miller, D.L. Kunz / Journal of Sound and Vibration 311 (2008) 991–1003996
For the majority of flights, the PC-GBS and ad hoc adjustments are on top of one another, indicating that
the PC-GBS and the ad hoc linear coefficients produce nearly identical sets of adjustments. This shows that the
ad hoc linear coefficients accurately reproduce the neural network mapping in the neighborhood of each of the
flight conditions.

Similar polar plots could be generated for the remaining adjustments on the UH-60 and each adjustment on
the AH-64A and AH-64D. However, a more concise technique for observing similarities in parallel adjustment
sets is to tabulate the largest magnitude of dissimilarity for each adjustment type (weight, pitch link, trim tab).
For every flight, a delta vector separating parallel adjustments was determined. Table 3 contains the
magnitude of the largest delta vector per adjustment type. For reference, the table also contains the minimum
adjustment unit that is mechanically allowable on the UH-60. Tables 4 and 5 contain similar information for
the AH-64A and AH-64D.

For all three aircraft, it can be seen that the largest adjustment difference is usually greater than the basic
adjustment unit. This indicates that the PC-GBS may, under some circumstances, produce slightly different
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Fig. 4. Weight adjustments for UH-60 as calculated by PC-GBS ðþÞ and by rms small move ð�Þ ad hoc coefficients.

Table 4

Largest difference between AH-64A ad hoc adjustment sets and PC-GBS adjustment sets

AH-64A Weight (g) Pitch link (flat) Tab 8–10 (deg) Tab 6–10 (deg) Tab 4–10 (deg)

Largest difference 43.78 0.417 0.960 0.838 0.471

Basic unit 52 0.25 0.5 0.5 0.5

Table 3

Largest difference between UH-60 ad hoc adjustment sets and PC-GBS adjustment sets

UH-60 Weight (oz) Pitch link (notch) Trim tab (mil)

Largest difference 2.178 1.253 4.699

Basic unit 1 1 1

Table 5

Largest difference between AH-64D ad hoc adjustment sets and PC-GBS adjustment sets

AH-64D Weight (g) Pitch link (flat) Tab 8–10 (deg) Tab 6–10 (deg) Tab 4–10 (deg)

Largest difference 96.37 0.492 2.063 1.248 0.437

Basic unit 52 0.25 0.5 0.5 0.5

N.A. Miller, D.L. Kunz / Journal of Sound and Vibration 311 (2008) 991–1003 997
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adjustment sets than the ad hoc linear coefficient algorithm. Since the PC-GBS mapping for the AH-64D has
already been shown to behave like the AVA mapping, and still has magnitude differences exceeding the
minimum adjustment unit, the values noted in these tables should not be interpreted as proof of nonlinearity
in the adjustment evaluation or vibration prediction network.

During the course of this analysis, it was observed that the ad hoc coefficient matrices were virtually
identical from flight to flight. In order to quantify the similarities in the matrices, the ad hoc coefficient
matrices were summed into a single root-mean-square (rms) coefficient matrix for each type aircraft. All flights
for each aircraft were then reevaluated using the appropriate single rms matrix. Tables 6–8 are analogous to
Tables 3–5 in that they show the maximum difference between the PC-GBS solution and the ad hoc rms
solution. When compared to Tables 3–5, it is apparent that the largest difference from the rms matrix
adjustments is smaller than the difference from the individual matrix adjustments. The most important
observation from examining these tables is that, for each type of helicopter, a single set of linear sensitivity
coefficients is capable of producing adjustment sets that are nearly identical to those from the adjustment
evaluation network of PC-GBS.

The preceding analysis included an equal distribution of flights from each of the four vibration categories.
The results of that analysis showed the mappings in the adjustment evaluation and vibration prediction
networks were essentially linear with respect to measured vibration magnitude. The ad hoc coefficient matrices
that were calculated for each aircraft used the minimum adjustment magnitudes to generate the coefficients.
The next part of the analysis addresses the effect of using large adjustment magnitudes to generate ad hoc

coefficient matrices from the vibration prediction network.
In order to determine whether large adjustment magnitudes result in nonlinear vibration predictions from

the vibration prediction network, a second set of ad hoc coefficients were created for each flight, using the
maximum allowable adjustment magnitudes from Table 2. It was anticipated that if any nonlinear mappings
had been learned by the neural network, these new coefficients would produce different sets of adjustments,
compared to the previous coefficients generated by using small moves. As shown in Tables 9–11, this is not the
case. These tables tabulate the magnitude of the largest difference vector, comparing adjustments determined
by the PC-GBS and the ad hoc coefficients created using large moves. They also contain the largest difference
Table 6

Largest difference between UH-60 rms ad hoc adjustment sets and PC-GBS adjustment sets

UH-60 Weight (oz) Pitch link (notch) Trim tab (mil)

Largest difference 1.402 0.475 1.166

Basic unit 1 1 1

Table 8

Largest difference between AH-64D rms ad hoc adjustment sets and PC-GBS adjustment sets

AH-64D Weight (g) Pitch link (flat) Tab 8–10 (deg) Tab 6–10 (deg) Tab 4–10 (deg)

Largest difference 14.698 0.066 0.219 0.125 0.043

Basic unit 52 0.25 0.5 0.5 0.5

Table 7

Largest difference between AH-64A rms ad hoc adjustment sets and PC-GBS adjustment sets

AH-64A Weight (g) Pitch link (flat) Tab 8–10 (deg) Tab 6–10 (deg) Tab 4–10 (deg)

Largest difference 33.901 0.410 0.426 0.363 0.337

Basic unit 52 0.25 0.5 0.5 0.5
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Table 9

Largest difference between UH-60 large move ad hoc adjustment sets and PC-GBS adjustment sets

UH-60 Weight (oz) Pitch link (notch) Trim tab (mil)

Largest difference 1.069 0.392 0.394

Largest rms difference 0.779 0.393 0.523

Basic unit 1 1 1

Table 10

Largest difference between AH-64A large move ad hoc adjustment sets and PC-GBS adjustment sets

AH-64A Weight (g) Pitch link (flat) Tab 8–10 (deg) Tab 6–10 (deg) Tab 4–10 (deg)

Largest difference 37.938 0.672 0.596 0.333 0.366

Largest rms difference 39.219 0.647 0.486 0.360 0.318

Basic unit 52 0.25 0.5 0.5 0.5

Table 11

Largest difference between AH-64D large move ad hoc adjustment sets and PC-GBS adjustment sets

AH-64D Weight (g) Pitch link (flat) Tab 8–10 (deg) Tab 6–10 (deg) Tab 4–10 (deg)

Largest difference 16.369 0.076 0.259 0.106 0.063

Largest rms difference 9.786 0.041 0.151 0.055 0.026

Basic unit 52 0.25 0.5 0.5 0.5

N.A. Miller, D.L. Kunz / Journal of Sound and Vibration 311 (2008) 991–1003 999
between the PC-GBS adjustment and the adjustments based on the single rms matrix of the large move, ad hoc

coefficients.
These tables show that for the UH-60 and the AH-64D, the respective rms matrices of the large moves

coefficients produced adjustment sets that were virtually identical to those of the PC-GBS. Fig. 5 illustrates
why the large difference exists for AH-64A pitch link adjustments. The small move rms adjustments are also
plotted in the figure.

Fig. 5 shows that as the magnitudes of the calculated adjustments grow, so do the differences between large
move ad hoc adjustments and PC-GBS adjustments. On the other hand, the small move adjustments tend to
track well with those of the PC-GBS. This means that the adjustment/vibration mapping of the vibration
prediction network closely matches that of the AEN for low adjustment magnitudes but differs at higher
magnitudes, thus indicating that nonlinear behavior is present in the AH-64A vibration prediction network for
pitch link adjustments. In order to accurately reproduce adjustment sets from the adjustment evaluation
network using a linear algorithm, coefficients based on small adjustment moves would be the most appropriate
choice for determining pitch link adjustments.

In Fig. 6, the large and small move rms adjustments are an excellent match to each other but consistently
produce adjustment magnitudes less than those of the adjustment evaluation network. This indicates that the
vibration/adjustment mapping of the vibration prediction network differs slightly from that of the adjustment
evaluation network but remains linear at all adjustment magnitudes. The weight, tab 6–10, and tab 4–10
adjustments for the AH-64A all behave in a linear fashion on par with those of the AH-64D and UH-60.

Overall, the rms ad hoc coefficients based on large adjustment moves appear, in most cases, to produce
adjustment sets that are virtually identical to those offered by the adjustment evaluation network. One final
justification for this is demonstrated in Table 12. This table lists the standard deviations of the differences
between PC-GBS adjustments and those produced with the rms coefficients of the large move, ad hoc
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Fig. 5. Pitch link adjustments for AH-64A as calculated by PC-GBS ðþÞ and by rms large move ð�Þ and small move ð�Þ ad hoc coefficients.
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Fig. 6. Tab 8–10 adjustments for AH-64A as calculated by PC-GBS ðþÞ and by rms large move ð�Þ and small move ð�Þ ad hoc coefficients.
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Table 13

UH-60 sensitivity coefficients as determined by large move, rms ad hoc coefficients

UH-60 Weight Pitch link Trim tab

Magnitude Phase Magnitude Phase Magnitude Phase

FPG100 ðA� BÞ 0.012437 335.1 0.061253 119.9 0.014479 146.7

Hover ðA� BÞ 0.003777 258.1 0.062257 140.9 0.008360 128.8

Hover ðAþ BÞ 5:73e� 06 15.6 0.013415 278.9 0.004451 243.3

80 kts ðA� BÞ 0.003672 261.0 0.027964 114.8 0.005148 99.7

80 kts ðAþ BÞ 1:78e� 05 309.2 0.043495 187.9 0.016227 197.2

120 kts ðA� BÞ 0.003595 250.2 0.042692 127.8 0.007671 116.6

120 kts ðAþ BÞ 5:66e� 05 273.8 0.068672 176.9 0.026840 191.4

145 kts ðA� BÞ 0.003700 249.2 0.046724 132.0 0.008472 139.5

145 kts ðAþ BÞ 4:11e� 05 311.3 0.081355 182.9 0.040795 190.3

Table 14

AH-64A sensitivity coefficients as determined by large move, rms ad hoc coefficients. Pitch link coefficients determined using small move,

rms ad hoc coefficients

AH-64A Weight Pitch link Tab 8–10 Tab 6–10 Tab 4–10

Magnitude ips/gm ips/flat ips/deg ips/deg ips/deg

FPG100 (Lat) 0.000588 0.014779 6:39e� 06 1:42e� 05 1:42e� 05

Hover (Lat) 0.000509 0.185371 0.030085 0.063803 0.104823

60 kt (Vert) 0.000369 0.030565 0.154106 0.254046 0.298218

80 kt (Vert) 2:94e� 08 0.079075 0.342480 0.506208 0.756329

100 kt (Vert) 5:48e� 08 0.129714 0.366005 0.552828 0.803414

120 kt (Vert) 3:66e� 08 0.159954 0.452708 0.664427 0.970470

140 kt (Vert) 5:94e� 08 0.235513 0.576983 0.833208 1.330095

Phase deg deg deg deg deg

FPG100 (Lat) 169.1 20.7 263.2 64.5 66.7

Hover (Lat) 166.9 54.7 71.0 60.9 50.9

60 kt (Vert) 225.1 220.0 248.1 246.0 258.8

80 kt (Vert) 117.6 268.5 252.1 263.9 261.9

100 kt (Vert) 111.4 267.4 262.1 256.0 260.0

120 kt (Vert) 93.3 248.6 253.0 256.0 260.0

140 kt (Vert) 112.4 246.1 244.0 250.0 238.0

Table 12

Standard deviation of the difference in parallel adjustments as determined by PC-GBS and large move, rms ad hoc coefficients

Weight (oz) Pitch link (notch) Trim tab (mil)

UH-60 0.266 0.1 0.1

Weight (g) Pitch link (flat) Tab 8–10 (deg) Tab 6–10 (deg) Tab 4–10 (deg)

AH-64A 8.55 0.15 0.14 0.10 0.07

AH-64D 4.47 0.02 0.06 0.03 0.02
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coefficient matrices. These standard deviation values are all smaller than the size of the basic adjustment unit.
Tables 13–15 show the ad hoc coefficients as determined from calculating the rms of the large move, ad hoc

coefficients for all flights.
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Table 15

AH-64D sensitivity coefficients as determined by rms of large move, ad hoc coefficients

AH-64A Weight Pitch link Tab 8–10 Tab 6–10 Tab 4–10

Magnitude ips/gm ips/flat ips/deg ips/deg ips/deg

FPG100 (Lat) 0.000491 0.044240 0.000000 0.000000 0.000000

Hover (Lat) 0.000456 0.155225 0.000000 0.000000 0.000000

60 kt (Vert) 0.000468 0.038996 0.159772 0.336765 0.647302

80 kt (Vert) 0.000452 0.063262 0.170617 0.287326 0.735197

100kt (Vert) 0.000480 0.113166 0.187719 0.314955 0.655976

120kt (Vert) 0.000451 0.180973 0.214903 0.372574 0.695178

140kt (Vert) 0.000449 0.242108 0.305237 0.444347 0.903616

Phase deg deg deg deg deg

FPG100 (Lat) 163.0 15.5 165.9 165.9 165.9

Hover (Lat) 171.1 57.6 238.3 238.9 238.9

60 kt (Vert) 212.0 286.3 263.6 270.5 256.0

80 kt (Vert) 204.7 273.2 261.6 261.3 259.2

100 kt (Vert) 216.0 262.1 258.7 268.3 256.7

120 kt (Vert) 219.7 256.1 255.8 258.7 255.0

140 kt (Vert) 235.7 247.3 250.3 260.4 250.6
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4. Concluding remarks

The principal objective of this study was to characterize the vibration/adjustment mapping as it is known to
a trained neural network. This goal was achieved through analysis of the adjustment evaluation network and
vibration prediction network of the PC-based ground based system. The results of this analysis show that the
adjustment evaluation network and the vibration prediction network (with one exception) behave linearly over
all vibratory categories (Table 1) and over the full range of adjustment magnitudes (Table 2). By studying
multiple flights on multiple airframes over a broad range of vibration and adjustment magnitudes, it was
determined that the PC-GBS mappings can be accurately described by linear sensitivity coefficients. Therefore,
it can be concluded that the vibration/adjustment mapping is linear; and that neural networks offer no
significant advantage over linear algorithms.

This conclusion may also be extended to other algorithms that might be used to identify nonlinear
vibration/adjustment mappings. If the true mapping between vibrations and adjustments were nonlinear, the
training of the neural network would have identified those nonlinearities and incorporated them into the
network. Since results from the neural network and the linear coefficients were nearly identical, the neural
network training did not identify any significant nonlinearities. One can then safely conclude that the
vibration/adjustment mappings are linear, and any other algorithm would yield the same result.

The assumption that the vibration/adjustment mapping is linear has been used in the development of rotor
smoothing equipment for quite some time, and has substantial support. However, the results of this
investigation provide the first quantitative evidence that the linear assumption is indeed valid. It also suggests
that inadequacies in the performance of linear rotor smoothing equipment is more likely due to inadequacies
in the underlying data used to generate the coefficients.

A study conducted by Wroblewski et al. [8] found that the PC-GBS algorithm outperformed the AVA
algorithm by consistently producing adjustment sets for the AH-64 with fewer moves, which resulted in lower
predicted vibrations. It is now apparent that the success that the PC-GBS has enjoyed is most likely not due to a
unique, nonlinear mapping between vibration levels and adjustments, but rather to improved mapping accuracy,
the effects of the solution optimization expert, and other improvements in processing the vibration data and
adjustment results. Use of the solution optimization network has resulted in major improvements by decreasing
the chances of human error in the main rotor smoothing iterations. This improvement is the result of selecting
adjustment sets with a minimum number of moves. While there is a slight degradation in predicted vibration
levels, the tradeoff is more than justified when the adjustment moves are applied correctly the first time.
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